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1. Using the ε− δ terminology, show
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2. Let f : (0,+∞) → R be a function given by

f(x) =
1

x2 + a2
.

Show that f is uniformly continuous if a > 0. What if a = 0? Justify your answer.

Solution. Let ε > 0 be given. Let x, y ∈ (0,+∞). Note that if x < a, then we see
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So setting δ :=
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2
yields the desired result.

When a = 0, the function f(x) =
1

x2
is not uniformly continuous on (0,+∞). ◀
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3. Suppose f : [a, b] → R is a continuous function such that f(a) < 0 < f(b). Let
S := {c ∈ [a, b] : f(c) < 0}.

(a) Show that γ = supS exists.

(b) Show that f(γ) = 0.

Solution. (a) Since we have that f(a) < 0, we know that a ∈ S and S is non-
empty. Since f(b) > 0, we know that S is bounded above by b. Hence,
γ = supS exists by the completeness of R.

(b) Since f is continuous, by the intermediate value theorem, there is a x ∈ [a, b]
such that f(x) = 0. It is clear that x is an upper bound of S and so we have that
γ ≤ x. Suppose γ < x and suppose f(γ) < 0. Then by the intermediate value
theorem, we have that there is a γ < z1 < x such that f(γ) < f(z1) < f(x) = 0.
But this means z1 ∈ S and contradicts the fact that γ is an upper bound of S.
So either γ = x, in which case we would have f(γ) = f(x) = 0, or f(γ) ≥ 0. If
f(γ) > 0, then a similar argument shows that we can find a z2 < γ such that
0 < f(zx) < f(γ) which contradicts the fact that γ is the least upper bound.

◀


