THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I Suggested Solutions for Quiz 2

1. Using the $\varepsilon - \delta$ terminology, show

$$\lim_{x \to 0} \frac{\sqrt{x+1}}{x+1} = 1$$

Solution. Let $\varepsilon > 0$ be given. We have that

$$\left| \frac{\sqrt{x+1}}{x+1} - 1 \right| = \left| \frac{\sqrt{x+1} - (x+1)}{x+1} \right| = \left| \frac{\sqrt{x+1} - (x+1)}{x+1} \cdot \frac{\sqrt{x+1} + (x+1)}{\sqrt{x+1} + (x+1)} \right|$$
$$= \left| \frac{-x^2 - 2x}{(x+1)(\sqrt{x+1} + (x+1))} \right| \le |x| \left| \frac{-(x+2)}{(x+1)(\sqrt{x+1} + (x+1))} \right|.$$

When $-\frac{1}{2} < x < \frac{1}{2}$, after some algebra, one can show that

$$\left|\frac{-(x+2)}{(x+1)(\sqrt{x+1}+(x+1))}\right| < 6(\sqrt{2}-1)$$

and so taking $\delta := \min\left\{\frac{1}{2}, \frac{\varepsilon}{6(\sqrt{2}-1)}\right\}$, we see that whenever $|x| < \delta$, $\left|\frac{\sqrt{x+1}}{x+1} - 1\right| < \varepsilon$ as required.

2. Let $f:(0,+\infty)\to\mathbb{R}$ be a function given by

$$f(x) = \frac{1}{x^2 + a^2}$$

Show that f is uniformly continuous if a > 0. What if a = 0? Justify your answer.

Solution. Let $\varepsilon > 0$ be given. Let $x, y \in (0, +\infty)$. Note that if x < a, then we see that $\frac{x}{x^2 + a^2} < \frac{a}{x^2 + a^2} < \frac{1}{a}$, and if a < x, then we see that $\frac{x}{x^2 + a^2} < \frac{x}{x^2} < \frac{1}{x} < \frac{1}{a}$. So either way, $\frac{x}{x^2 + a^2} < \frac{1}{a}$ for $x \in (0, +\infty)$. We have

$$\begin{aligned} \left| \frac{1}{x^2 + a^2} - \frac{1}{y^2 + a^2} \right| &= \left| \frac{y^2 - x^2}{(x^2 + a^2)(y^2 + a^2)} \right| \\ &\leq |y - x| \left(\left| \frac{y}{(x^2 + a^2)(y^2 + a^2)} \right| + \left| \frac{x}{(x^2 + a^2)(y^2 + a^2)} \right| \right) \\ &\leq |y - x| \cdot \frac{2}{a^3}. \end{aligned}$$

So setting $\delta := \frac{\varepsilon a^3}{2}$ yields the desired result.

When
$$a = 0$$
, the function $f(x) = \frac{1}{x^2}$ is not uniformly continuous on $(0, +\infty)$.

- 3. Suppose $f : [a,b] \to \mathbb{R}$ is a continuous function such that f(a) < 0 < f(b). Let $S := \{c \in [a,b] : f(c) < 0\}.$
 - (a) Show that $\gamma = \sup S$ exists.
 - (b) Show that $f(\gamma) = 0$.
 - **Solution.** (a) Since we have that f(a) < 0, we know that $a \in S$ and S is nonempty. Since f(b) > 0, we know that S is bounded above by b. Hence, $\gamma = \sup S$ exists by the completeness of \mathbb{R} .
 - (b) Since f is continuous, by the intermediate value theorem, there is a $x \in [a, b]$ such that f(x) = 0. It is clear that x is an upper bound of S and so we have that $\gamma \leq x$. Suppose $\gamma < x$ and suppose $f(\gamma) < 0$. Then by the intermediate value theorem, we have that there is a $\gamma < z_1 < x$ such that $f(\gamma) < f(z_1) < f(x) = 0$. But this means $z_1 \in S$ and contradicts the fact that γ is an upper bound of S. So either $\gamma = x$, in which case we would have $f(\gamma) = f(x) = 0$, or $f(\gamma) \ge 0$. If $f(\gamma) > 0$, then a similar argument shows that we can find a $z_2 < \gamma$ such that $0 < f(z_x) < f(\gamma)$ which contradicts the fact that γ is the least upper bound.

	-	
-		